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  Abstract--- In data mining, there is no learning algorithm 

which attains the highest accuracy on any dataset. Arbiter and 

Combiner as techniques to integrate classifiers induced from 

partitioned data, having as optimization criterion the accuracy 

of a given dataset. We have explored an approach called meta-

learning that is related to the traditional approaches of data 

reduction commonly employed in distributed query processing 

systems.  Here we seek efficient means to learn how to 

combine a number of base classifiers, which are learned from 

subsets of the data, so that we scale efficiently to larger 

learning problems, and boost the accuracy of the constituent 

classifiers if possible. In this paper we compare the arbiter tree 

strategy to a new but related approach called the combiner 

tree strategy. The one-level meta-learning learning techniques 

may not produce highly accurate classifiers.  Here, we explore 

hierarchical techniques by applying meta-learning strategies 

recursively. 
 
    Index Terms--- Arbiter, Combiner, Hierarchical Meta-

learning Techniques. 

 

I. INTRODUCTION 

Financial institutions and market analysis firms have 

for years attempted to learn simple categorical 

classifications of their potential customer base, i.e., 

relevant patterns of attribute values of consumer data that 

predict a low-risk (high profit) customer versus a high-

risk (low profit) customer. Many corporations seeking 

similar added value from their databases are already 

dealing with overwhelming amounts of global 

information that in time will likely grow in size faster 

than available improvements in machine resources. 

Furthermore, many existing learning algorithms require 

all the data to be resident in main memory, which is 

clearly untenable in many realistic databases.  In certain 

cases, data are inherently distributed and cannot be 

localized on any one machine (even by a trusted third 

party) for competitive business reasons, as well as 

statutory constraints imposed by government. In such 

situations, it may not be possible, nor feasible, to inspect 

all of the data at one processing site to compute one 

primary “global” classifier. 

Incremental learning algorithms and windowing 

techniques aim to solve the scaling problem by piecemeal 

processing of a large data set. Others have studied 

approaches based upon direct parallelization of a learning 

algorithm run on a multiprocessor. A review of such 

approaches has appeared elsewhere (Chan & Stolfo 

1995). An alternative approach we study here is to apply 

data reduction techniques common in distributed query 

processing where cluster of computers can be profitably 

employed to learn from large databases. This means one 

may partition the data into a number of smaller disjoint 

training subsets, apply some learning algorithm on each 

subset (perhaps all in parallel), followed by a phase that 

combines the learned results in some principled fashion. 

In the case of inherently distributed databases, each 

constituent fixed partition constitutes the training set for 

one instance of a machine learning  program that 

generates one distinct classifier (far smaller in size than 

the data). The classifiers so generated may be a 

distributed set of rules, a number of C programs (e.g. 

“black box” neural net programs), or a set of “intelligent 

agents” that may be readily exchanged between 

processors in a network.  Notice, however, that as the size 

of the data set and the number of its partitions increase, 

the size of each partition relative to the entire database 

decreases. This implies that the accuracy of each base 

classifier will likely degrade.  Thus, we also seek to boost 

the accuracy of the distinct classifiers by combining their 

collective knowledge. In this paper we study more 

sophisticated techniques for combining predictions 

generated by a set of base classifiers, each of which is 

computed by a learning algorithm applied to a distinct 

data subset.  

 

II. META-LEARNING 

Meta-learning (Chan & Stolfo, 1993b) is loosely 

defined as learning of meta-knowledge about learned 

knowledge.  In our work we concentrate on learning from 

the output of concept learning systems.  In this case meta-

learning means learning from the predictions of these 

classifiers on common training data. A classifier (or 

concept) is the output of a concept learning system and a 

prediction (or class generated by a classifier when an 

instance is supplied. Thus, we are interested in the output 

of the classifiers, not the internal structure and strategies 

of the learning algorithms themselves. Moreover, in 

several of the schemes we define, the training data 

presented to the learning algorithms initially are also 

available to the meta-learner under certain circumstances. 

Figure 1 depicts the different stages in a simplified meta-

learning scenario: 

1. The classifiers (base classifiers) are trained from the 

initial (base-level) training sets. 

2. Predictions are generated by the learned classifiers on 

the training sets. 

3.  A meta-level training set is composed from the 

predictions generated by the Classifiers. 

4. The final classifier meta-classifier is trained from the 

meta-level training set. 

In meta-learning, a learning algorithm is used to learn 

how to integrate the learned classifiers.  That is, rather 

than having a predetermined and fixed integration rule 

(for example, voting), the integration rule is learned based 

on the behavior of the trained classifier. 
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Fig 1: Meta-learning 

 

III. META-LEARNING TECHNIQUES 

Our approach is to Meta-learn a set of new classifiers 

(or meta-classifiers) whose training data are sets of 

predictions generated by a set of base classifiers. Arbiters 

and combiners are the two types of meta-classifiers 

studied here. 

We distinguish between base classifiers and 

arbiters/combiners as follows. A base classifier is the 

outcome of applying a learning algorithm directly to 

“raw” training data. The base classifier is a program that 

given a test datum provides a prediction of its unknown 

class. An arbiter or combiner, as detailed below, is a 

program generated by a learning algorithm that is trained 

on the predictions produced by a set of base classifiers 

and sometimes the raw training data. The 

arbiter/combiner is also a classifier, and hence other 

arbiters or combiners can be computed from the set of 

predictions of other arbiters/combiners. 

A.  Arbiter 

An arbiter (Chan&Stolfo, 1993d) is learned by some 

learning algorithm to arbitrate among predictions 

generated by different base classifiers. That is, its purpose 

is to provide an alternate and more educated prediction 

when the base classifiers present diverse predictions. This 

arbiter, together with an arbitration rule, decides a final 

classification outcome based upon the base predictions. In 

the arbiter strategy, the training set for the meta-learner is 

a subset of the training set for the base learners; i.e. the 

meta-level training instances are a particular distribution 

of the raw training set. The predictions of the learned 

base classifiers for the training set and a selection rule, 

which varies in different schemes, determines which 

subset will constitute the meta-learner’s training set. (This 

contrasts with the combiner strategy, which has the same 

number of examples for the base classifier as for the 

combiner. Also, the meta-level training instances for a 

combiner incorporate additional information than just the 

raw training data.) Based on this training set, the meta-

learner generates a meta-classifier, in this case called an 

arbiter. In classifying an instance, the base classifiers first 

generate their predictions. These predictions, together 

with the arbiter’s prediction and a corresponding 

arbitration rule, generate the final prediction (see Figure 

2).  In this strategy one learns to arbitrate among the 

potentially different predictions from the base classifiers, 

instead of learning to coalesce the predictions as in the 

combiner strategy. The details of how the final decision is 

made follow. Let x be an instance whose classification we 

seek, C1(x),C2(x), ……Ck(x) are the predicted 

classifications of  x from k base classifiers, C1, C2, ….Ck, 

and A(x) is the classification of x predicted by the arbiter.  

One arbitration rule studied and reported here is as 

follows: 

 Return the class with a plurality of votes in 

C1(x), C2(x) ….Ck(x), and A(x), with preference given to 

the arbiter’s choice in case of a tie. 

We now detail how an arbiter is learned.  The training 

set of an arbiter is generated in a way that it contains the 

raw training examples whose classifications the base 

classifiers cannot predict consistently.  Formally, a 

training set T for the arbiter is generated by picking 

examples is dictated by a selection rule.   

One version of a selection rule studied here is as 

follows: 

An instance is selected if none of the classes in the k 

base predictions gathers a majority vote (> k/2 votes); i.e., 

T = {x € E | no majority (C1(x), C2(x), .Ck(x))}. The 

purpose of this rule is to choose examples that are 

confusing; i.e., the majority of classifiers do not agree.  

Figure2 presents a sample training set for the arbiter 

strategy.  Once the training set is formed, an arbiter is 

generated by the same learning algorithm used to train the 

base classifiers. Together with an arbitration rule, the 

learned arbiter resolves conflicts among the classifiers 

when necessary.  

B. Combiner 

The aim of the combiner strategy (Chan & Stolfo, 

1993a) is to coalesce the predictions from the base 

classifiers by learning the relationship between these 

predictions and the correct prediction. For example, a 

base classifier might consistently make the correct 

predictions for class c i.e., when this base classifier 

predicts class c, it is probably correct regardless of the 

predictions made by the other base classifiers.  In the 

combiner strategy the predictions of the learned base 
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classifiers on the training set form the basis of the meta-

learner’s training set.  A composition rule, which varies 

in different schemes, determines the content of training 

examples for the meta-learner.  From these examples, the 

meta-learner generates meta-classifiers, that we call a 

combiner.  In classifying an instance, the base classifiers 

first generate their predictions. Based on the same 

composition rule, a new instance is generated from the 

predictions, which is then classified by the combiner (see 

Figure 2). We note that a combiner computes a prediction 

that may be entirely different from any proposed by a 

base classifier, whereas an arbiter chooses one of the 

predictions from the base classifiers and the arbiter itself. 

 
 
Fig 2: An Arbiter and A Combiner With Two Classifiers 

We experimented with two schemes for the 

composition rule.  First, the predictions, C1(x), 

C2(x)...Ck(x), for each example x in the validation set of 

examples, E, are generated by the k base classifiers.  

These predicted classifications are used to form a new set 

of “meta-level training instances”, T, which is used as 

input to a learning algorithm that computes a combiner.  

The manner in which T is computed varies as defined 

below.  In the following definitions, class(x) and  

attribute_vector(x) denote the correct classification and 

attribute vector of example x as specified in the validation 

set, E. 

 Return meta-level training instances with the 

correct classification and the predictions; i.e., T = 

{(class(x), C1(x), C2(x)... Ck(x)) | x € E}.  This scheme 

was also used by Wolpert (1992).  (This scheme is 

denoted as class-combiner) 

 Return meta-level training instances as in class-

combiner with the addition of the attribute vectors; i.e., T 

= {(class(x), C1(x), C2(x),….Ck(x), attribute_vector(x)) | x 

€ E}.  (This scheme is denoted as class-attribute-

combiner) 

Note the difference in training data. Arbiters are 

computed from a distinguished and biased subset of data 

selected from the input database used to train the base 

classifiers.  Combiners, however, are trained on the 

predicted classifications of that data generated by the base 

classifiers, as well as the data itself. 

C. Issues 

Several issues arise from our meta-learning strategies 

and are detailed as follows: 

(1) Number and size of training subsets:  The number 

of initially partitioned training data subsets largely 

depends on the number of processor available, the 

inherent distribution of data across multiple 

platforms(some possibly mobile and periodically 

disconnected), the total size of the available training set, 

and the complexity of the learning algorithms.  The 

available resources at each processing sites naturally 

defines an upper bound on the size of each subset.  If the 

number of subsets exceeds the number of processors 

available, each processor can simulate the work of 

multiple one by serially executing the task of each 

processor.  Another consideration is the desired accuracy 

we wish to achieve.   As we will see in our experimental 

results, there may be a trade-off between the number of 

subsets and the final accuracy of a meta-learning system.  

Moreover, the size of each subset cannot be too small 

because sufficient data must be available for each 

learning process to produce an effective base classifier in 

the initial stage of training. 

(2)Distribution of examples disjoint or replicated: 

Since a totally random distribution of examples may 

result in the absence of one or more classes in the 

partitioned data subsets, the classifiers formed from those 

subsets will be ignorant about those classes.  That is, 

more “disagreements” may occur between classifier, 

which leads to larger arbiter training sets.  Maintaining 

the class distribution in each subset as in the total 

available training set may alleviate this problem.  The 

classifiers generated from these subsets, may be closer in 

behaviour to the global classifier produced from the entire 

training set than those trained on random class 

distributions.  In addition, disjoint data subsets promote 

the maximum amount of parallelism and hence are more 

desirable.  Yet partial replication may mitigate the 

problem of extreme bias potentially introduced by 

disjoint data. 

(3)Strategies: There are indeed many strategies for 

arbitration and combining as detailed here, each 

impacting the size of training data required to implement 

them effectively.  Several experiments were run to 

determine the relative effectiveness of some of these 

strategies.  They vary in the type of information or biased 

distributions of training data the arbiter is allowed to see.  

Thus far, the meta-learning strategies we discussed are 

applied solely to a single collection of base classifiers.  

These are called “one-level” meta-learners.  We also 

studied building hierarchical structures in a recursive 

fashion, i.e., meta-learning arbiters and combiners from a 

collection of “lower level” arbiters and combiners.  These 

hierarchical classifiers attempt to improve the prediction 
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accuracy that may be achieved by one-level meta-learned 

classifiers. 

 

IV. HIERARCHICAL META-LEARNING 

TECHNIQUES 

The one-level meta-learning learning techniques may 

not produce highly accurate classifiers.  Here, we explore 

hierarchical techniques by applying meta-learning 

strategies recursively. 

A.  Arbiter Trees 

An arbiter tree is a hierarchical structure composed of 

arbiters that are computed in a bottom-up, binary-tree 

fashion.    An arbiter is initially learned from the output 

of a pair of base classifiers and recursively, an arbiter is 

learned from the output of two arbiters.  For k subsets and 

k classifiers, there are log2 (k) levels generated. 

When an instance is classified by the arbiter tree, 

predictions flow from the leaves to the root.  First, each 

of the leaf classifiers produces an initial classification of 

the test instance.  From a pair of predictions and the 

parent arbiter's prediction, another prediction is produced 

by an arbitration rule.  This process is applied at each 

level until a final prediction is produced at the root of the 

tree.  We now proceed to describe how to build an arbiter 

tree in detail. 

Suppose there are initially four training data subsets 

(T1 – T4), processed by some learning algorithm, L.  

First, four classifiers (C1 – C4) are generated from four 

instances of L applied to T1 – T4.  The union of the 

subsets T1 and T2, U12, is then classified by C1 and C2, 

which generates two sets of predictions, P1 and P2.  A 

selection rule as detailed earlier generates a training set 

(T12) for the arbiter from the predictions P1 and P2, and 

the subset U12.  The arbiter (A12) is then trained from 

the set T12 by algorithm L.  Similarly, arbiter A34 is 

generated from T3 and T4 and hence all the first-level 

arbiters are produced.  Then U14 is formed by the union 

of subsets T1 through T4 and is classified by the arbiter 

trees rooted with A12 and A34.  Similarly, T14 and A14 

(root arbiter) are generated and the arbiter tree is 

complete.  The resultant tree is depicted in Figure 3. 

 
Fig 3: A Sample Arbiter tree 

This process can be generalized to arbiter trees of 

higher order.  The higher the order is, the shallower the 

tree becomes.  In a parallel environment this translates to 

faster execution.  However, there will logically be an 

increase in the number of disagreements (and hence data 

items selected for training) and higher communication 

overhead at each level in the tree due to the arbitration of 

many more predictions at a single arbitration site. 

In a distributed computing environment, the union sets 

need not be formed at one processing site.  Rather, we 

can classify each subset by transmitting each learned 

classifier to each site which is used to scan the local data 

set that is labelled with the classifier's predictions.  Each 

classifier is a computational object far smaller in size than 

the training sets from which they are derived.  For 

example, in a network computing environment each 

classifier may be encapsulated as an “agent” that is 

communicated among sites. 

Since an arbiter training set is constructed from the 

results of the arbiter's two subtrees, each node in the 

arbiter tree is a synchronization point.  That is, arbitrary 

subtrees can be run asynchronously with no 

communication until a pair of subtrees joins at the same 

parent.  The time to learn an arbiter tree is proportional to 

the longest path in the tree, which is bounded by the path 

with the most training data.  To reduce the complexity of 

learning arbiter trees, the size of the training sets for 

arbiters is purposefully restricted to be no larger than the 

training sets used to compute base classifiers.  Thus, the 

parallel processing time at each level of the tree is 

relatively equal throughout the tree.  However, in several 

of our experiments, this restriction on the allowable size 

of the training sets for arbiters was removed to explore 

two key issues:  whether higher accuracy could be 

achieved by providing more information for each arbiter, 

and what might be the number of disagreements so 

generated, and hence the size of training data that would 

naturally be formed by our selection rules. 

Notice that the maximum training set size doubles as 

one moves up one level in the tree and is equal to the size 

of the entire training set when the root is reached.  

Obviously, we do not desire forming a training set at the 

root as large as the original training set.  Indeed, meta-

learning in this case is of no use, and at great expense.  

Therefore, we derive a means to control the size of the 

arbiter training sets as we move up the tree without a 

significant reduction in accuracy of the final result. 

Since the training sets selected at an arbiter node 

depends on the classification results from the two 

descendant sub trees during run time, the configuration of 

an arbiter tree cannot be optimized during compile time.  

The size of these set (i.e., the number of disagreements) is 

not known until the base classifiers are first computed.  

However, we may optimize the configuration of a tree 

during run time by clever paring of classifiers.  The 

configuration of the resulting tree depends upon the 

manner in which the classifiers and arbiters are paired 
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and ordered at each level.  Our goal here is to devise a 

pairing strategy that favours smaller training sets near the 

root. 

Our strategy we may consider is to pair the classifiers 

and arbiters at each level that would produce the fewest 

disagreements and hence the smallest arbiter training sets 

(denoted as min-size).  Another possible strategy is to 

pair those classifiers that produce the highest number of 

disagreements (max-size).  At first glance the first 

strategy would seem to be more attractive.  However, if 

the disagreements between classifiers are not resolved at 

the bottom of the tree, the data that are not commonly 

classified will surface near the root of the tree, which is 

also where there are fewer choices of pairings of 

classifiers to control the growth of the training sets.  

Hence, it may be advantageous to resolve the 

disagreements near the leaves producing fewer 

disagreements near the root.  That is, it may be more 

desirable to pair classifiers and arbiters that produce the 

largest sets lower in the tree, which is perhaps counter 

intuitive.  These sophisticated pairing schemes might 

decrease the arbiter training set size, but they might also 

increase the communication overhead in a distributed 

computing environment. They also create synchronization 

points at each level, instead of at each node when no 

special parings are performed.  A compromise strategy 

might be to perform pairing only at the leaf level.  This 

indirectly affects the subsequent training sets at each 

level, but synchronization occurs only at each node and 

not at each level. 

B. Combiner Trees 

The way combiner trees are learned and used is very 

similar to arbiter trees.  A combiner tree is trained 

bottom-up.  A combiner, instead of an arbiter, is 

computed at each non-leaf node of a combiner tree. To 

classify an instance, each of the leaf classifiers produces 

an initial prediction.  From a pair of predictions, the 

composition rule is used to generate a meta-level 

instance, which is then classified by the parent combiner.  

This process is applied at each level until a final 

prediction is produced at the root of the tree. 

Another significant departure from arbiter trees is that 

for combiner trees, a random set of examples (a 

validation set) is selected at each level of learning in 

generating a combiner tree instead of choosing a set from 

the union of the underlying data subsets.  Before learning 

commences, a random set of examples is picked from the 

underlying subsets for each level of the combiner tree.  

To ensure efficient processing, the size of these random 

training sets is limited to the size of the initial subsets 

used to train base classifiers.  Base classifiers are learned 

at the leaf level from disjoint training data.  Each pair of 

base classifiers produce predictions for the random 

training set at the first level.  Following the composition 

rule, a meta-level training set is generated from the 

predictions and training examples.  A combiner is then 

learned from the meta-level training set by applying a 

learning algorithm.  This process is repeated at each level 

until the root combiner is created.  Again, in a network 

computing environment classifiers may be represented as 

remote agent processes to distribute the meta-learning 

process. 

The arbiter and combiner tree strategies have different 

impact on efficiency.  The arbiter tree approach we have 

implemented requires the classification of, possible, the 

entire data set at the root level.  Significant speed up 

might not be easily obtained.  The combiner tree 

approach, however, always classifies a set of data that is 

bounded by the size of a relatively small validation set.  

Therefore, combiner trees can be generated more 

efficiently than arbiter trees.  However, it remains to be 

seen what impact on accuracy either scheme may exhibit. 

 

V. CONCLUSION 

In the arbiter approach, an arbiter is meta-learned from 

the predictions of the local data mining algorithm.  The 

arbiter accepts as input a data set containing "confusing" 

tuples, i.e., tuples whose value of the goal attribute is 

predicted in an inconsistent manner by the different local 

data mining algorithms.  Note that an arbiter learns to 

choose among the conflicting predictions made by 

different local data mining algorithms, while a combiner 

can make a prediction completely different from the 

predictions made by any local data mining algorithm.  

Once an arbiter is learned, the final prediction is 

determined by taking into account the prediction made by 

the local data mining algorithms and the prediction made 

by the arbiter.  These predictions are combined by using 

some kind of arbitration rule - such as returning the 

prediction with the majority of occurrences, with 

preference given to the arbiter's prediction in the case of a 

tie.  Both the combiner and the arbiter approach can be 

extended to a form of hierarchical meta-learning [Chan & 

Stolfo 97], [Chan & Stolfo 95a].   

In this case an arbiter tree or a combiner tree is built in 

a bottom up fashion.  The tree leaves are associated with 

the local data mining algorithms.  The predictions of 

these algorithms are sent up the tree, being used as input 

data for the combiners or arbiters in the next higher tree 

level.  This process is recursively applied until a root 

node outputs the final prediction. It has been observed 

that this hierarchical meta-learning scheme improves 

prediction accuracy over the simpler (and faster) one-

level meta-learning scheme.  Furthermore, hierarchical 

meta-learning can often lead to a prediction accuracy 

equivalent to the one achieved with a global data mining 

algorithm (mining the entire original data set).  Also, 

sometimes hierarchical meta-learning can lead to a 

prediction accuracy even higher than the one achieved 

with a global data mining algorithm. However, 

Hierarchical meta-learning schemes are often able to 

sustain the same level of accuracy as a global classifier 

trained on the entire data set. 
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