

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

 261

A Comparison of Arbiter and Combiner Trees
Dr.M. Usha Rani, G.T. Prasanna Kumari

 Abstract--- In data mining, there is no learning algorithm

which attains the highest accuracy on any dataset. Arbiter and

Combiner as techniques to integrate classifiers induced from

partitioned data, having as optimization criterion the accuracy

of a given dataset. We have explored an approach called meta-

learning that is related to the traditional approaches of data

reduction commonly employed in distributed query processing

systems. Here we seek efficient means to learn how to

combine a number of base classifiers, which are learned from

subsets of the data, so that we scale efficiently to larger

learning problems, and boost the accuracy of the constituent

classifiers if possible. In this paper we compare the arbiter tree

strategy to a new but related approach called the combiner

tree strategy. The one-level meta-learning learning techniques

may not produce highly accurate classifiers. Here, we explore

hierarchical techniques by applying meta-learning strategies

recursively.

 Index Terms--- Arbiter, Combiner, Hierarchical Meta-

learning Techniques.

I. INTRODUCTION

Financial institutions and market analysis firms have

for years attempted to learn simple categorical

classifications of their potential customer base, i.e.,

relevant patterns of attribute values of consumer data that

predict a low-risk (high profit) customer versus a high-

risk (low profit) customer. Many corporations seeking

similar added value from their databases are already

dealing with overwhelming amounts of global

information that in time will likely grow in size faster

than available improvements in machine resources.

Furthermore, many existing learning algorithms require

all the data to be resident in main memory, which is

clearly untenable in many realistic databases. In certain

cases, data are inherently distributed and cannot be

localized on any one machine (even by a trusted third

party) for competitive business reasons, as well as

statutory constraints imposed by government. In such

situations, it may not be possible, nor feasible, to inspect

all of the data at one processing site to compute one

primary “global” classifier.

Incremental learning algorithms and windowing

techniques aim to solve the scaling problem by piecemeal

processing of a large data set. Others have studied

approaches based upon direct parallelization of a learning

algorithm run on a multiprocessor. A review of such

approaches has appeared elsewhere (Chan & Stolfo

1995). An alternative approach we study here is to apply

data reduction techniques common in distributed query

processing where cluster of computers can be profitably

employed to learn from large databases. This means one

may partition the data into a number of smaller disjoint

training subsets, apply some learning algorithm on each

subset (perhaps all in parallel), followed by a phase that

combines the learned results in some principled fashion.

In the case of inherently distributed databases, each

constituent fixed partition constitutes the training set for

one instance of a machine learning program that

generates one distinct classifier (far smaller in size than

the data). The classifiers so generated may be a

distributed set of rules, a number of C programs (e.g.

“black box” neural net programs), or a set of “intelligent

agents” that may be readily exchanged between

processors in a network. Notice, however, that as the size

of the data set and the number of its partitions increase,

the size of each partition relative to the entire database

decreases. This implies that the accuracy of each base

classifier will likely degrade. Thus, we also seek to boost

the accuracy of the distinct classifiers by combining their

collective knowledge. In this paper we study more

sophisticated techniques for combining predictions

generated by a set of base classifiers, each of which is

computed by a learning algorithm applied to a distinct

data subset.

II. META-LEARNING

Meta-learning (Chan & Stolfo, 1993b) is loosely

defined as learning of meta-knowledge about learned

knowledge. In our work we concentrate on learning from

the output of concept learning systems. In this case meta-

learning means learning from the predictions of these

classifiers on common training data. A classifier (or

concept) is the output of a concept learning system and a

prediction (or class generated by a classifier when an

instance is supplied. Thus, we are interested in the output

of the classifiers, not the internal structure and strategies

of the learning algorithms themselves. Moreover, in

several of the schemes we define, the training data

presented to the learning algorithms initially are also

available to the meta-learner under certain circumstances.

Figure 1 depicts the different stages in a simplified meta-

learning scenario:

1. The classifiers (base classifiers) are trained from the

initial (base-level) training sets.

2. Predictions are generated by the learned classifiers on

the training sets.

3. A meta-level training set is composed from the

predictions generated by the Classifiers.

4. The final classifier meta-classifier is trained from the

meta-level training set.

In meta-learning, a learning algorithm is used to learn

how to integrate the learned classifiers. That is, rather

than having a predetermined and fixed integration rule

(for example, voting), the integration rule is learned based

on the behavior of the trained classifier.

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

 262

Fig 1: Meta-learning

III. META-LEARNING TECHNIQUES

Our approach is to Meta-learn a set of new classifiers

(or meta-classifiers) whose training data are sets of

predictions generated by a set of base classifiers. Arbiters

and combiners are the two types of meta-classifiers

studied here.

We distinguish between base classifiers and

arbiters/combiners as follows. A base classifier is the

outcome of applying a learning algorithm directly to

“raw” training data. The base classifier is a program that

given a test datum provides a prediction of its unknown

class. An arbiter or combiner, as detailed below, is a

program generated by a learning algorithm that is trained

on the predictions produced by a set of base classifiers

and sometimes the raw training data. The

arbiter/combiner is also a classifier, and hence other

arbiters or combiners can be computed from the set of

predictions of other arbiters/combiners.

A. Arbiter

An arbiter (Chan&Stolfo, 1993d) is learned by some

learning algorithm to arbitrate among predictions

generated by different base classifiers. That is, its purpose

is to provide an alternate and more educated prediction

when the base classifiers present diverse predictions. This

arbiter, together with an arbitration rule, decides a final

classification outcome based upon the base predictions. In

the arbiter strategy, the training set for the meta-learner is

a subset of the training set for the base learners; i.e. the

meta-level training instances are a particular distribution

of the raw training set. The predictions of the learned

base classifiers for the training set and a selection rule,

which varies in different schemes, determines which

subset will constitute the meta-learner’s training set. (This

contrasts with the combiner strategy, which has the same

number of examples for the base classifier as for the

combiner. Also, the meta-level training instances for a

combiner incorporate additional information than just the

raw training data.) Based on this training set, the meta-

learner generates a meta-classifier, in this case called an

arbiter. In classifying an instance, the base classifiers first

generate their predictions. These predictions, together

with the arbiter’s prediction and a corresponding

arbitration rule, generate the final prediction (see Figure

2). In this strategy one learns to arbitrate among the

potentially different predictions from the base classifiers,

instead of learning to coalesce the predictions as in the

combiner strategy. The details of how the final decision is

made follow. Let x be an instance whose classification we

seek, C1(x),C2(x), ……Ck(x) are the predicted

classifications of x from k base classifiers, C1, C2, ….Ck,

and A(x) is the classification of x predicted by the arbiter.

One arbitration rule studied and reported here is as

follows:

 Return the class with a plurality of votes in

C1(x), C2(x) ….Ck(x), and A(x), with preference given to

the arbiter’s choice in case of a tie.

We now detail how an arbiter is learned. The training

set of an arbiter is generated in a way that it contains the

raw training examples whose classifications the base

classifiers cannot predict consistently. Formally, a

training set T for the arbiter is generated by picking

examples is dictated by a selection rule.

One version of a selection rule studied here is as

follows:

An instance is selected if none of the classes in the k

base predictions gathers a majority vote (> k/2 votes); i.e.,

T = {x € E | no majority (C1(x), C2(x), .Ck(x))}. The

purpose of this rule is to choose examples that are

confusing; i.e., the majority of classifiers do not agree.

Figure2 presents a sample training set for the arbiter

strategy. Once the training set is formed, an arbiter is

generated by the same learning algorithm used to train the

base classifiers. Together with an arbitration rule, the

learned arbiter resolves conflicts among the classifiers

when necessary.

B. Combiner

The aim of the combiner strategy (Chan & Stolfo,

1993a) is to coalesce the predictions from the base

classifiers by learning the relationship between these

predictions and the correct prediction. For example, a

base classifier might consistently make the correct

predictions for class c i.e., when this base classifier

predicts class c, it is probably correct regardless of the

predictions made by the other base classifiers. In the

combiner strategy the predictions of the learned base

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

 263

classifiers on the training set form the basis of the meta-

learner’s training set. A composition rule, which varies

in different schemes, determines the content of training

examples for the meta-learner. From these examples, the

meta-learner generates meta-classifiers, that we call a

combiner. In classifying an instance, the base classifiers

first generate their predictions. Based on the same

composition rule, a new instance is generated from the

predictions, which is then classified by the combiner (see

Figure 2). We note that a combiner computes a prediction

that may be entirely different from any proposed by a

base classifier, whereas an arbiter chooses one of the

predictions from the base classifiers and the arbiter itself.

Fig 2: An Arbiter and A Combiner With Two Classifiers

We experimented with two schemes for the

composition rule. First, the predictions, C1(x),

C2(x)...Ck(x), for each example x in the validation set of

examples, E, are generated by the k base classifiers.

These predicted classifications are used to form a new set

of “meta-level training instances”, T, which is used as

input to a learning algorithm that computes a combiner.

The manner in which T is computed varies as defined

below. In the following definitions, class(x) and

attribute_vector(x) denote the correct classification and

attribute vector of example x as specified in the validation

set, E.

 Return meta-level training instances with the

correct classification and the predictions; i.e., T =

{(class(x), C1(x), C2(x)... Ck(x)) | x € E}. This scheme

was also used by Wolpert (1992). (This scheme is

denoted as class-combiner)

 Return meta-level training instances as in class-

combiner with the addition of the attribute vectors; i.e., T

= {(class(x), C1(x), C2(x),….Ck(x), attribute_vector(x)) | x

€ E}. (This scheme is denoted as class-attribute-

combiner)

Note the difference in training data. Arbiters are

computed from a distinguished and biased subset of data

selected from the input database used to train the base

classifiers. Combiners, however, are trained on the

predicted classifications of that data generated by the base

classifiers, as well as the data itself.

C. Issues

Several issues arise from our meta-learning strategies

and are detailed as follows:

(1) Number and size of training subsets: The number

of initially partitioned training data subsets largely

depends on the number of processor available, the

inherent distribution of data across multiple

platforms(some possibly mobile and periodically

disconnected), the total size of the available training set,

and the complexity of the learning algorithms. The

available resources at each processing sites naturally

defines an upper bound on the size of each subset. If the

number of subsets exceeds the number of processors

available, each processor can simulate the work of

multiple one by serially executing the task of each

processor. Another consideration is the desired accuracy

we wish to achieve. As we will see in our experimental

results, there may be a trade-off between the number of

subsets and the final accuracy of a meta-learning system.

Moreover, the size of each subset cannot be too small

because sufficient data must be available for each

learning process to produce an effective base classifier in

the initial stage of training.

(2)Distribution of examples disjoint or replicated:

Since a totally random distribution of examples may

result in the absence of one or more classes in the

partitioned data subsets, the classifiers formed from those

subsets will be ignorant about those classes. That is,

more “disagreements” may occur between classifier,

which leads to larger arbiter training sets. Maintaining

the class distribution in each subset as in the total

available training set may alleviate this problem. The

classifiers generated from these subsets, may be closer in

behaviour to the global classifier produced from the entire

training set than those trained on random class

distributions. In addition, disjoint data subsets promote

the maximum amount of parallelism and hence are more

desirable. Yet partial replication may mitigate the

problem of extreme bias potentially introduced by

disjoint data.

(3)Strategies: There are indeed many strategies for

arbitration and combining as detailed here, each

impacting the size of training data required to implement

them effectively. Several experiments were run to

determine the relative effectiveness of some of these

strategies. They vary in the type of information or biased

distributions of training data the arbiter is allowed to see.

Thus far, the meta-learning strategies we discussed are

applied solely to a single collection of base classifiers.

These are called “one-level” meta-learners. We also

studied building hierarchical structures in a recursive

fashion, i.e., meta-learning arbiters and combiners from a

collection of “lower level” arbiters and combiners. These

hierarchical classifiers attempt to improve the prediction

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

 264

accuracy that may be achieved by one-level meta-learned

classifiers.

IV. HIERARCHICAL META-LEARNING

TECHNIQUES

The one-level meta-learning learning techniques may

not produce highly accurate classifiers. Here, we explore

hierarchical techniques by applying meta-learning

strategies recursively.

A. Arbiter Trees

An arbiter tree is a hierarchical structure composed of

arbiters that are computed in a bottom-up, binary-tree

fashion. An arbiter is initially learned from the output

of a pair of base classifiers and recursively, an arbiter is

learned from the output of two arbiters. For k subsets and

k classifiers, there are log2 (k) levels generated.

When an instance is classified by the arbiter tree,

predictions flow from the leaves to the root. First, each

of the leaf classifiers produces an initial classification of

the test instance. From a pair of predictions and the

parent arbiter's prediction, another prediction is produced

by an arbitration rule. This process is applied at each

level until a final prediction is produced at the root of the

tree. We now proceed to describe how to build an arbiter

tree in detail.

Suppose there are initially four training data subsets

(T1 – T4), processed by some learning algorithm, L.

First, four classifiers (C1 – C4) are generated from four

instances of L applied to T1 – T4. The union of the

subsets T1 and T2, U12, is then classified by C1 and C2,

which generates two sets of predictions, P1 and P2. A

selection rule as detailed earlier generates a training set

(T12) for the arbiter from the predictions P1 and P2, and

the subset U12. The arbiter (A12) is then trained from

the set T12 by algorithm L. Similarly, arbiter A34 is

generated from T3 and T4 and hence all the first-level

arbiters are produced. Then U14 is formed by the union

of subsets T1 through T4 and is classified by the arbiter

trees rooted with A12 and A34. Similarly, T14 and A14

(root arbiter) are generated and the arbiter tree is

complete. The resultant tree is depicted in Figure 3.

Fig 3: A Sample Arbiter tree

This process can be generalized to arbiter trees of

higher order. The higher the order is, the shallower the

tree becomes. In a parallel environment this translates to

faster execution. However, there will logically be an

increase in the number of disagreements (and hence data

items selected for training) and higher communication

overhead at each level in the tree due to the arbitration of

many more predictions at a single arbitration site.

In a distributed computing environment, the union sets

need not be formed at one processing site. Rather, we

can classify each subset by transmitting each learned

classifier to each site which is used to scan the local data

set that is labelled with the classifier's predictions. Each

classifier is a computational object far smaller in size than

the training sets from which they are derived. For

example, in a network computing environment each

classifier may be encapsulated as an “agent” that is

communicated among sites.

Since an arbiter training set is constructed from the

results of the arbiter's two subtrees, each node in the

arbiter tree is a synchronization point. That is, arbitrary

subtrees can be run asynchronously with no

communication until a pair of subtrees joins at the same

parent. The time to learn an arbiter tree is proportional to

the longest path in the tree, which is bounded by the path

with the most training data. To reduce the complexity of

learning arbiter trees, the size of the training sets for

arbiters is purposefully restricted to be no larger than the

training sets used to compute base classifiers. Thus, the

parallel processing time at each level of the tree is

relatively equal throughout the tree. However, in several

of our experiments, this restriction on the allowable size

of the training sets for arbiters was removed to explore

two key issues: whether higher accuracy could be

achieved by providing more information for each arbiter,

and what might be the number of disagreements so

generated, and hence the size of training data that would

naturally be formed by our selection rules.

Notice that the maximum training set size doubles as

one moves up one level in the tree and is equal to the size

of the entire training set when the root is reached.

Obviously, we do not desire forming a training set at the

root as large as the original training set. Indeed, meta-

learning in this case is of no use, and at great expense.

Therefore, we derive a means to control the size of the

arbiter training sets as we move up the tree without a

significant reduction in accuracy of the final result.

Since the training sets selected at an arbiter node

depends on the classification results from the two

descendant sub trees during run time, the configuration of

an arbiter tree cannot be optimized during compile time.

The size of these set (i.e., the number of disagreements) is

not known until the base classifiers are first computed.

However, we may optimize the configuration of a tree

during run time by clever paring of classifiers. The

configuration of the resulting tree depends upon the

manner in which the classifiers and arbiters are paired

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

 265

and ordered at each level. Our goal here is to devise a

pairing strategy that favours smaller training sets near the

root.

Our strategy we may consider is to pair the classifiers

and arbiters at each level that would produce the fewest

disagreements and hence the smallest arbiter training sets

(denoted as min-size). Another possible strategy is to

pair those classifiers that produce the highest number of

disagreements (max-size). At first glance the first

strategy would seem to be more attractive. However, if

the disagreements between classifiers are not resolved at

the bottom of the tree, the data that are not commonly

classified will surface near the root of the tree, which is

also where there are fewer choices of pairings of

classifiers to control the growth of the training sets.

Hence, it may be advantageous to resolve the

disagreements near the leaves producing fewer

disagreements near the root. That is, it may be more

desirable to pair classifiers and arbiters that produce the

largest sets lower in the tree, which is perhaps counter

intuitive. These sophisticated pairing schemes might

decrease the arbiter training set size, but they might also

increase the communication overhead in a distributed

computing environment. They also create synchronization

points at each level, instead of at each node when no

special parings are performed. A compromise strategy

might be to perform pairing only at the leaf level. This

indirectly affects the subsequent training sets at each

level, but synchronization occurs only at each node and

not at each level.

B. Combiner Trees

The way combiner trees are learned and used is very

similar to arbiter trees. A combiner tree is trained

bottom-up. A combiner, instead of an arbiter, is

computed at each non-leaf node of a combiner tree. To

classify an instance, each of the leaf classifiers produces

an initial prediction. From a pair of predictions, the

composition rule is used to generate a meta-level

instance, which is then classified by the parent combiner.

This process is applied at each level until a final

prediction is produced at the root of the tree.

Another significant departure from arbiter trees is that

for combiner trees, a random set of examples (a

validation set) is selected at each level of learning in

generating a combiner tree instead of choosing a set from

the union of the underlying data subsets. Before learning

commences, a random set of examples is picked from the

underlying subsets for each level of the combiner tree.

To ensure efficient processing, the size of these random

training sets is limited to the size of the initial subsets

used to train base classifiers. Base classifiers are learned

at the leaf level from disjoint training data. Each pair of

base classifiers produce predictions for the random

training set at the first level. Following the composition

rule, a meta-level training set is generated from the

predictions and training examples. A combiner is then

learned from the meta-level training set by applying a

learning algorithm. This process is repeated at each level

until the root combiner is created. Again, in a network

computing environment classifiers may be represented as

remote agent processes to distribute the meta-learning

process.

The arbiter and combiner tree strategies have different

impact on efficiency. The arbiter tree approach we have

implemented requires the classification of, possible, the

entire data set at the root level. Significant speed up

might not be easily obtained. The combiner tree

approach, however, always classifies a set of data that is

bounded by the size of a relatively small validation set.

Therefore, combiner trees can be generated more

efficiently than arbiter trees. However, it remains to be

seen what impact on accuracy either scheme may exhibit.

V. CONCLUSION

In the arbiter approach, an arbiter is meta-learned from

the predictions of the local data mining algorithm. The

arbiter accepts as input a data set containing "confusing"

tuples, i.e., tuples whose value of the goal attribute is

predicted in an inconsistent manner by the different local

data mining algorithms. Note that an arbiter learns to

choose among the conflicting predictions made by

different local data mining algorithms, while a combiner

can make a prediction completely different from the

predictions made by any local data mining algorithm.

Once an arbiter is learned, the final prediction is

determined by taking into account the prediction made by

the local data mining algorithms and the prediction made

by the arbiter. These predictions are combined by using

some kind of arbitration rule - such as returning the

prediction with the majority of occurrences, with

preference given to the arbiter's prediction in the case of a

tie. Both the combiner and the arbiter approach can be

extended to a form of hierarchical meta-learning [Chan &

Stolfo 97], [Chan & Stolfo 95a].

In this case an arbiter tree or a combiner tree is built in

a bottom up fashion. The tree leaves are associated with

the local data mining algorithms. The predictions of

these algorithms are sent up the tree, being used as input

data for the combiners or arbiters in the next higher tree

level. This process is recursively applied until a root

node outputs the final prediction. It has been observed

that this hierarchical meta-learning scheme improves

prediction accuracy over the simpler (and faster) one-

level meta-learning scheme. Furthermore, hierarchical

meta-learning can often lead to a prediction accuracy

equivalent to the one achieved with a global data mining

algorithm (mining the entire original data set). Also,

sometimes hierarchical meta-learning can lead to a

prediction accuracy even higher than the one achieved

with a global data mining algorithm. However,

Hierarchical meta-learning schemes are often able to

sustain the same level of accuracy as a global classifier

trained on the entire data set.

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

 266

REFERENCES
[1] Lior Rokach, Pattern Classification Using Ensemble

Methods, 2010.

[2] Alex A. Freitas, Simon Hugh Lavington, Mining Very
Large Databases with Parallel Processing, 2000.

[3] Oded Z. Maimon, Lior Rokach, Data Mining and
Knowledge Discovery Handbook, 2005.

[4] Nong Ye, the Handbook of Data Mining, 2003.

[5] P. Chan and S. Stolfo. Meta-learning for multistrategy and

parallel learning. In Proc. Second Intl. Work. On
Multistrategy Learning, pages 150–165, 1993.

[6] Chan, P., and Stolfo, S. 1993a. Experiments on
multistrategy learning by meta-learning. In Proc. Second
Intl. Conf.Info. Know.Manag. 314–323.

[7] Chan, P., and Stolfo, S. 1993b. Toward parallel and
distributed learning by meta-learning. In Working Notes
AAAI Work. Know. Disc. Databases, 227–240.

[8] Chan, P., and Stolfo, S. 1995. A comparative evaluation of
voting and meta-learning on partitioned data. In
Proc.Twelfth Intl. Conf. Machine Learning.

[9] A. Prodromidis, P. Chan and S. Stolfo. “Meta-learning in
distributed data mining systems: Issues and approaches”,
Advances in distributed data mining, AAAI Press, 2000.

[10] P. Chan and S. Stolfo. “Learning arbiter and combiner
trees from partitioned data for scaling machine learning”,

Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, 1995.

AUTHOR BIOGRAPHY

Dr.M.Usha Rani is an Associate Professor in

the Department of Computer Science and

HOD for MCA, Sri Padmavati Mahila

Viswavidyalayam (SPMVV Women’s’

University), Tirupati. She did her Ph.D. in

Computer Science in the area of Artificial

Intelligence and Expert Systems. She is in

teaching since 1992. She presented many

papers at National and Internal Conferences and published articles in

national & international journals. She also written 4 books like Data

Mining - Applications: Opportunities and Challenges, Superficial

Overview of Data Mining Tools, Data Warehousing & Data Mining and

Intelligent Systems & Communications. She is guiding M.Phil. and

Ph.D. in the areas like Artificial Intelligence, Data Warehousing and

Data Mining, Computer Networks and Network Security etc.

Mrs G.T.Prasanna Kumari is an Associate

Professor in the Department of Computer Science

and Engineering, Gokula Krishna College of

Engineering, Sullurpet. She is pursuing Ph.D., in

Computer Science in the area of Distributed Data

Mining Systems. She is in teaching since 1999.

She presented papers at National and

International Conferences and published articles

in national & international journals.

